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1. Introduction and Terminology

- Supose G is a graph with p points and let n be a positive integer
such tha p > 2n + 2. Graph G is said to be n-extendable if every
matching\of size n in G extends to a perfect matching. "(We-wit--sb--
breviate tl~e term "perfect matching" to_'-'p.mQL--hereafter.jA graph G
is called bi~ritical if G - u - v has a perfect matching, for all pairs of
points u, v t V(G). In JhP2] a canonical decomposition theory for graphs
in terms of their maximum (or, when present, perfect) matchings is dis-
cussed at length. Bicritical graphs play an important roll in this theory.
In particular, those bicritical graphs which are 3-connected (the so-called
bricks) currently represent the "atoms" of the decomposition theory in
that no further decomposition of these graphs has been obtained as yet.
Indeed at present we seem far from an understanding of the structure of
bicritical graphs or even that of bricks. '- ' -,- -

Although interesting in its own right, the study of n-extendability
zg; v I became more important when in jPlflj it was shown that every.. 2-ex-

SX . tendable non-bipartite graph is a brick and that, for n > 2, every n-

extendable graph is also (n - 1)-extendable. Thus we have available for
:t - study a nested set of subcollections, of bicritical graphs.

0i ,The results of the present paper will be presented in two parts.Fj In Section 2, we present some new procedures for constructwiinfinite
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families of bricks by means of constructing families of non-bipartite 2-
extendable graphs.

In Section 3, we focus our attention on extending matchings in planar
graphs. Planar 1-extendable graphs abound; for example, every cubic 3-
polytopal graph has this property. On the other hand, it has been shown
[Plu2] that no planar graph is 3-extendable. Between these extremes,
then, lies the class of planar 2-extendable graphs.

We will further restruct our attention in Section 3 to cubic 3-connect-
ed planar graphs (or cubic polytopal graphs, as they are sometimes
called). Which of these graphs are 2-extendable? Our main result states
that any cubic polytopal graph which is cyclically 4-connected, but has
no quadrilateral face, is 2-extendable. (Clearly, if such a graph has no
quadrilateral face, it can have no cycle of length 4 at all.) In particular,
cubic polytopal graphs with cyclic connectivity at least 5 must be 2-
extendable.

2. Some families of bicritical and 2-extendable graphs

The complete graphs on an even number of points, {K 2 }Or=, are
trivially bicritical, as are the wheel graphs with even total number of
points. (A wheel graph is obtained by joining every point of a cycle to
a common point (or "hub") not on the cycle.) The first non-trivial class
of graphs proven to be bicritical seems to be the class of Halin graphs.
(See [LP11. These graphs have also been called based polyhedra by
Rademacher [Ri] and roofless polyhedra by P6lya.) These graphs are
sometimes indicated by T U C where T is a tree on an even number of
points in which each non-endpoint has minimum degree 3, and C is a
cycle through the endpoints of tree T so that T U C is planar.

For i = 1, 2, let G, be a graph containing a point v, of degree 3.
Further suppose that the neighbors of vi in G, are {x,, y,, z, }. Let us
denote by GI(vv 2 )G2 (or simply G1,2 when the v,'s are understood) the
graph obtained from G, and G2 by deleting points v, and v 2 and then
inserting the lines X:X2, Y1Y2 and zz 2 . We shall have occasion to call -

this operation 3-joining. (See Figure 2.1.)

2.1. THEOREM. Suppose G1 , G 2 , v1, v2 and G 1 ,2 are as given
above. Thb!n:

(a) if G, and G2 are bicritical, so i's G 1 ,2.
(b) if G, and G 2 are 2-extendable and non-bipartite, so is G,

PROOF. Let G', = G, - v,, for i = 1,2. To prove (a), let uI and u., . ,

be two distinct points in graph G 1 ,2 . First suppose u1 . u.., E V((;'). Let ,
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FIGURE 2.1.

P1 be a p.m. of G1 - U1 - u2 and without loss of generality let v 1xl be
the line of P, covering point vj. Then let P2 be a p.m. of G 2 containing
line v2x2 . (Remember that every bicritical graph is 1-extendable.) Then
P 1 U P 2 - VX 1 - v2X 2 + xIX 2 is a p.m. for G 1,2 - U1 - u 2 .

Now suppose ul E V(G') and u2 E V(G'). Let Pi be a p.m. for
G, - iu - vi for i = 1, 2. Then P1 U P 2 is a p.m. in G 1, 2.

To prove (b), let el and e2 be two independent lines in G1,2.
Before proceeding, let us note that since each G, is 2-extendable,

IV(G,)I 6 and hence {xj, yi,zi} is a cutset in Gi. Moreover, by
Theorem 3.2 of [Plul], each G is 3-connected. But then by Theorem 2.2
of [Plu3] each cutset {xj, yi, zi} is independent in Gi.

Now suppose that {el,e 2} C V(G'). Let P1 be a p.m. of G 1

containing eI and e2 . Since {x 1 , y1, z I} is independent, without loss of
generality we may assume that xzvj is the line of P covering point
vi. Then if P2 is a p.m. of G 2 containing line x2 v2 , the matching
Pi U P 2 - xIvI - X2 v2 + xIX2 is a p.m. for G1 ,2 containing el and e2 .

Secondly, suppose el E E(G) and e2 E E(,-,). Now line e, meets
at most one of the points x,, y, and zi, since {x,, y,, z,} is independent
in G,, so among the pairs {x 1 ,x 2}l,(Y1 Y2} and {z1,z 2} we can choose
one - say {X1,X2} - such that neither xl nor X2 is covered by either eI
or e2 . For 1 = 1,2, let P, be a p.m. for G, containing e, and x,v,. Then
P1 U P 2 - zXIV - X2 v2 + xIx 2 is a p.m. for G 1,2 containing el and e2.

Thirdly, suppose el = X1X2 and e2 E E(G2). Let P be a p.m. for
G containing xzvi and let P2 be a p.m. for G 2 containing x2v2 and eq.
Then P 1 U P 2 - xIvI - X2v 2 + X1X2 is a p.m. for G1,2 containing el and

e2 .

Finally, suppose {e 1 ,e 2} C {x 1IX 2 , Y1 Y2, zz 2 }, say without loss of
generality that el = X12 and e2 = YIY2. Now since each G, is non-
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bipartite, it is bicritical by Theorem 4.2 of [Plul] and hence Gi - xi - yi
has a p.m. Pi. Moreover, Pi must contain line vizi. But then PI U P2 -

v1z 1 - v 2 z 2 + z 1 z2 + el + e2 is a p.m. for G1 ,2 containing lines el and e2 .
It only remains to show that G 1,2 is non-bipartite. But since G1

and G2 are both non-bipartite, they are bicritical (again using Theorem
4.2 of [Plull) and hence by part (a) of the present theorem, G 1,2 is also
bicritical. But no bicritical graph is bipartite and this completes the
proof. 0

Since the operation of 3-joining preserves the properties of being
cubic, 3-connected and planar, it may be used to obtain infinite families
of bicritical polytopal graphs and infinite families of 2-extendable cubic
3-polytopal graphs. For example, let G1 and G2 be two copies of the
dodecahedron and let vi be any point in Gi for i = 1, 2. Then G1 ,2 is
again 2-extendable and, since it is non-bipartite, it is also bicritical.

Let us point out that the complete graph on four points, K 4 , is a
much smaller starting graph for generating bicritical graphs by 3-joining
than is the dodecahedron, but K 4 is not 2-extendable. Note that if one
joins two copies of K 4 together via a 3-joining, the resulting 6-point
graph (the so-called triangular pyramid) is not 2-extendable either.

It is also interesting to point out that, although 3-joining preserves
2-extendability in non-bipartite graphs, this operation when applied to
bipartite graphs, never preserves 2-extendability! More particularly, see
Corollary 2.3 which follows the next theorem.

A set of lines L = {eg,...,ek} _ E(G) is a cyclic k-cut in a
connected graph G if G - L consists of two components each of which
contains a cycle.

2.2. THEOREM. Suppose G is a 2-extendable graph with a cyclic
3-cut L = {el, e2 , e3 }. Then if H1 and H 2 are the components of G - L,

neither H, nor H 2 is bipartite.

PROOF. Suppose L = {el,e 2,e3 } is a cyclic 3-cut and that el =
XIX 2 , e2 = Y1Y2 and e3 - zIz 2 where {x,, y,,z,} 9 V(H,). Let H , =

H,-x,-y,-z, for i= 1,2.

First we claim that L is a matching. For suppose not. Without loss of
generality, we may suppose that el and e2 are adjacent at point x, = Yl-

Then since H1 contains a cycle, it must contain a point u V {xi, yl, z 1}.
But then {x 1 ,z 1 } is a cutset in G. (We point out that zi may or may
not be different from x, = Yi here.) But this contradicts the fact that G
must be 3-connected by Theorem 3.2 of [Plul] and the claim is proved.

Suppose that V(H'1 ) 0. Then since G is 3-connected, Hi must

L*AL& . . ' _'. . . .
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be a triangle on points x1 , y, and z1 . But then let f be any line in
H 2 incident with x2 , Y2 or z2 . Without loss of generality, suppose f is
incident with X2. Then lines {f, ylzl} do not extend to a p.m. in G, a
contradiction.

Thus we may assume both V(H') 34 0 and V(H') y6 0. However,
then for both i = 1, 2, the set {xi, Yi, zi) is a point cutset in G and
again by Theorem 2.2 of [Plu3], each is independent. But then since
mindeg G > 3, it follows immediately that IV(H')I _ 2, for i = 1, 2.

Suppose now that H 2 is bipartite. There are then two cases to treat,
depending upon the parity of IV(H 2 )I.

(a) Suppose first that IV(H 2 )I is even. Let the bipartition of H 2 be
(A2 , B2 ). Then among the points X2, Y2, z 2 some two must belong to the
same color class. Without loss of generality, suppose that X2 , Y2 E A 2 .

Now let P1 be a p.m. of G containing lines el and e2 . By parity, P,
must match z 2 into H'. Hence IA21 = IB21 + 2.

But now since IV(H')t _> 2, and {x 2 , Y2, Z2 } is an independent
cutset, there must be two independent lines joining x 2 and Y2 to two
points in V(H'). Call these lines f 1 and f2. Let P2 be a p.m. of G
containing lines f1 and f2. Then by parity, since H 2 is even, P2 must
match z 2 into H' as well. So P2 restricted to H 2 is a p.m. of H2 and
hence [A2 1 = JB2 1, a contradiction. Hence IV(H 2 )I cannot be even.

Suppose, therefore, that IV(H 2 )I is odd. As before, we may assume
that (A 2 , B 2 ) is the bipartition of H2 with x2, Y2 E A2 .

First suppose that z2 E A 2 as well. Let P3 be a p.m. for G containing
el and e2 - and hence by parity - e3 as well. Thus IA2 1 = IB 2 1 + 3.
Once again, as in Case (a) above, there must be two independent lines fI
and f2 matching x 2 and Y2 into H'. Let P4 be a p.m. of G containing
fI and f2. Then by parity, P4 contains e3. But then IA2 1 = I B21 + 1, a
contradiction.

Thus we may assume that z2 E B2 . Let P5 be a p.m. of G containing
el and e2 and - by parity - e3 as well. Thus IA2 1 = IB21 + 1.
But as before, without loss of generality, we may assume there are two
independent lines f, and f2 matching x2 and Y2 into H'. Let P be a
p.m. for G containing lines f, and f2. Then, by parity, line e3 = zI z 2 E
P6 . Then IA2 1 = IB21 - 1, a contradiction.

Thus H 2 is not bipartite and, similarly, neither is Hi. U

2.3. COROLLARY. If G is a 2-extendable bipartite graph, then (;

?s cyclically 4-connected. U

We can in fact be a bit more precise about just which sets of two
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independent lines extend to p.m.'s in a graph obtained from two bipartite
2-extendable graphs by 3-joining. To this end we provide the following
result.

2.4. THEOREM. Let G, and G 2 be 2-extendable bipartite graphs
and suppose vi E V(G1 ) and V2 E V(G 2 ) are both points of degree 3.
Then:
(a) the 3-join graph Gl(vIv 2 )G 2 = G 1 ,2 is 1-extendable and bipartite
and
(b) if el and e2 are two independent lines in G 1,2 then they extend to a
p.m. of G 1 ,2 if and only if at least one of el and e2 is not a join line.

PROOF. Suppose the bipartition of Gi is Ai U Bi where vi E Ai for
i = 1,2. Then 1A11 = B1I and (B1 UA 2 - V2) U (A1 U B2 - v1 ) is a
bipartition of G 1 ,2 .

Now let el and e2 be independent lines in G1,2 . If {e1, e2 }

if el E E(G') and e2 E E(G'), or if el is a join line and e2 E E(G'), say,
then {el, e2} extends to a p.m. of G 1 ,2 by Theorem 2.1(b).

So suppose el = xIx 2 and e2 = YIY2 are both join lines. Further,
suppose that P is a p.m. for G1 ,2 containing el and e2 . Then since
(V(G)J is odd for i = 1,2, P must contain e3 = zIz 2 as well. But

{xI,yi,zi} C B 1 and hence P must match B' = B 1 - {xl,yl,z,} onto
A, - v1 which is impossible since IB'J = IAI - vI - 2. Thus there is no
p.m. for G 1,2 containing el and e2 . This completes the proof of part
(b).

It remains only to show that every join line extends to a p.m. of
G1 ,2 . Let us consider the join line e = xIx 2 . Now each G, is I-extendable
by Theorem 2.2 of [Plul]. Thus let P, be a p.m. for G, - x, - v, for
z = 1, 2. Then P = P u P2 - XIVI -x 2 2 + xIx 2 is a p.m. for G 1,2 . 0

We now present a second construction. Again for i = 1, 2, let G, be
a graph containing a point v, of degree 3. Suppose once again that the
neighbors of v, in G, are {x,, y, z,}. Let us denote by GIhex(vl, v2 )G2

(or simply GlhexG 2 when the v,'s are understood) the graph obtained
from G and G 2 by deleting v, and v2 , adding a hexagon on 6 new
points, a1 a2 b1 b2c1 c2 a1 , and adding lines x,a,, y~b, and zc, for i = 1,2.
We will call GlhexG 2 a hex-join of G, and G 2. (See Figure 2.2.)

We then have the following result which is parallel to Theorem 2.1.

2.5. THEOREM. Suppose G 1 , G 2 , v1 , v2 and GlhexG 2 are as qiven

above. Then:
(a) If G, and G 2 are btcritcal, so is GIhexG 2 , and
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FIGURE 2.2.

(b) If G1 and G 2 are 2-extendable and non-bipartite, then so is GlhexG 2.

PROOF. (a). The proof here is in much the same spirit as the proof
of part (a) of Theorem 2.1. Hence we will treat only one representative
case and leave the rest to the reader. (Again we adopt the labeling shown
in Figure 2.2. The reader should observe that the symmetry displayed
in Figure 2.2 substantially reduces the number of cases which need to be
treated.)

Let us suppose that u E {a,, bl ,c,}. Without loss of generality,
suppose that u, = a,. Also suppose v E {a2, b2, c2}. By symmetry we
need treat only two subcases, namely when v = a2 and when v = b2.

If v = a2 , let P, be ap.m. of G-yl-v, and let P2 be ap.m.
of G2 - Y2 - v 2 . Then P, U P2 + y1b, + y 2 b2 + zIc 2 is a p.m. for
(GlhexG2) - U - v. If v = b2 , let P be a p.m. for G1 - Yl - v, and P2 ,
a p.m. for G2 - X2 - v 2 . Then P 1 U P2 + y1 b, + x 2a 2 + ClC 2 is a p.m. for
(GIhexG 2) - u - v.

Similarly, the proof of part (b) here mimics that of Theorem 2.1.
We therefore present only two representative cases, one in which the
bicriticality of G, and G2 is used (and hence the assumption that each
is non-bipartite) and one in which it is not used.

So first let el = x1a, andd e2 = y1bl. We seek a p.m. for
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GlhexG2 containing el and e2. Since G1 is bicritical, there is a p.m.
P1 for G1 - xl- y and it must contain line z 1vI. Similarly, there is
a p.m. P2 for G2 - X2- Y2 and it must contain line z 2v 2 . But then
P1 U P 2 - z 1v 1 -z 2v 2 + x 1a, + yibl + zic, + X2 a 2 + y 2 b2 + z 2c2 is a p.m.
for GlhexG2 containing el and e2 .

Finally, let el = ala2 and e2 = b1b2 . Then let P1 be a p.m. for
G 1 containing zlvl and P2 be a p.m. for G 2 containing z 2 v 2 . Then
P 1 U P 2 - Z1 V1 - z 2v 2 + Z1 C1 + z 2c 2 + a1 a2 + bb 2 is a p.m. for GlhexG 2

containing el and e2 .

3. The main result

Recall from the previous section that the construction procedures
called 3-joining and hex-joining preserve the properties of 3-regularity,
3-connectivity, planarity, bicriticality and 2-extendability. On the other
hand, since each of these operations automatically inserts a cyclic cutset
of size 3, cyclic connectivity is not necessarily preserved.

A question which arose early in the studies culminating in this paper
was whether or not a cubic 3-connected planar graph (hereafter called a
simple 3-polytopal graph) of sufficiently high cyclic connectivity must
be 2-extendable. (For more information on polytopal graphs, the reader
is referred to the classical book of Griinbaum [Gi]. Suffice it to say, for
our purposes, that the 3-connected planar graphs are called polytopal
because they are just the skeleta of 3-polytopes by a celebrated theorem
of Steinitz [S].)

Examples showing that cyclic 3- and 4-connectivity are not sufficient
to insure 2-extendability in cubic 3-polytopal graphs are presented at the
end of this section.

We now present our main result.

3.1. THEOREM. If G is a cubic 3-polytopal graph which is cyclically
4-connected and has no faces of size 4, then G is 2-extendable.

PROOF. Before proceeding, we would point out that the hypotheses
of this theorem imply that G cannot have any 3-cycles or 4-cycles.

Now suppose G satisfies the hypotheses of the theorem, but is not 2-
extendable. So let el = x 1yl and e2 = x2Y2 be two independent lines in
G which do not lie iii a p.m. for G. Thus graph G' = G-x 1 -Yi -x 2 -Y 2

has no perfect matching and hence, by Tutte's classical theorem on
perfect matchings, there is a set S' C V(G) such that c,(G' - S') > IS'I,
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where co(G' - S') denotes the number of odd components of G' - S'.

Then since IV(G')I is even, parity dictates that co(G'- S') > JS'J + 2.
Suppose in fact that c,(G' -S') _ !S/I + 3 and hence again by parity

that c,(G' - S') _ IS'! + 4. Now G is 1-extendable, by a result of Plesnik
[Plell (and independently by a result of Little, Grant and Holton [LGH1,
LGH2]). So line e2 = x2 Y2 lies in a p.m. for G and hence G" = G-x 2 -y 2

has a p.m. But then in G" we have a set S" = S' U {xl, Yl} such that
co(G" - S") = c,(G'- S') >_ JS'J + 4 = iS"I + 2. But then by Tutte's
Theorem, graph G" has no p.m., a contradiction. Thus co(G' - S') =

IS1'1+2.
Let S = S'U {X 1 ,y 1 ,X2,Y2}. We claim that G- S has no even

components. For suppose C, were such an even component. Then since
G is 3-connected, there must be at least 3 (and hence by parity, at least
4) lines from C, to S. These lines, together with el and e2 , imply that no
more than 31S I -8 lines are sent from S to the odd components of G - S.
But viewing these lines from G - S, each odd component must send at
least 3 lines to S and hence there are at least 3(ISI-2) = 31SI-6 of these
lines, so we have a contradiction. Thus G - S has no even components.

Let N denote the number of lines joining S to G - S. Note that
since G is 3-connected, each odd component of G- S must send at least 3
lines to S and hence N > 3(ISI-2) = 31SI-6. So we have the inequality
31I - 6 < N < 31S I -4. Accordingly, there are three cases to consider.

Case 1. Suppose N = 31S I - 6. So in S there exists precisely one
more line e3, in addition to lines el and e2, and each odd component of
G - S sends exactly 3 lines up to S. Thus up to a relabeling of the three
ei, G has the appearance of one of the three graphs shown in Figure 3.1.

Henceforth we will denote by C 1 , C2 ,..., Clsl_2 the odd components
of G-S.

Suppose now that all the Ci's are singletons. Then a well-known
variation on Euler's formula relating the number of points, lines and faces
of any planar graph yields Z-(6-i)fi = 12, where fi denotes the number
of faces containing i lines in their boundary. Hence 3f3 + 2f4 + f5 _ 12
and since f3 = f4 = 0, we must have f5 > 12. But G - el - e2 - e 3 is
bipartite, and it then follows that f5 < 6, a contradiction.

Hence we may assume that there exists one of the Ci - say C, -

with IV(C1) > 3.
Claim 1. Component C1 contains a cycle.
For suppose not. Then it must be a tree with at least 2 endpoints

and hence it must send at least 4 lines to S, a contradiction.
Claim 2. Subgraph G1 = G[V(G) - V(C1 )] contains a cycle.
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FIGURE 3.1.

Suppose not. Then G 1 is a forest containing at least 3 lines, so it
must contain at least 2 endpoints. But then G1 must send at least 4 lines
down to C 1 , again a contradiction.

So we have shown that the 3 lines joining C1 to G 1 are a cyclic cutset
of size 3, contradicting the hypothesis that G is cyclically 4-connected.

Case 2. Suppose 31S I - 5. But then since there are exactly ISI - 2
odd components in G - S and each must send at least 3 lines to S by the
3-connectivity of G, we must have one odd component of G - S sending
exactly 4 lines to S and all the rest sending exactly 3. But G is cubic, so
it is impossible for any odd component of G - S to send an even number
of lines to S and we have a contradiction.

Case 3. So we may assume that 31S I - 4 = N. So there must
be exactly two lines in the induced subgraph G[S] and they must be el
and e2 . Since no odd component of G - S can send exactly 4 lines to
S by parity, but all odd components must send at least 3 lines to S
by 3-connectivity, we must have exactly one odd component of G - S,
without loss of generality say it is C 1 , sending at least 5 lines to S.
(So component C1 must contain at least 3 points.) But then we have

31S I -4 = N > 5 + 3(ISI - 3) = 31S I -4, and it follows that we must
have exactly one odd component which sends exactly 5 lines to S, this odd

!p.
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FIGURE 3.2.

component must contain at least 3 points and all other odd components
of G - S send exactly 3 lines to S.

Let C2 be any other odd component of G - S different from C1.
Suppose component C2 is not a singleton.

By the arguments of Claims 1 and 2 of Case 1 above, component C2
and subgraph G[V(G) - V(C 2)] both contain cycles.

But then we have a cyclic cutset joining 02 and G2 containing ex-
actly 3 lines, contradicting the hypothesis that G is cyclically 4-connected.

Thus component G, is an odd component sending exactly 5 lines to S
and all the remaining odd components of G - S, namely, 02,.. 7 C1 qI-2,
are singletons incident with exactly 3 lines from S. (See Figure 3.2.)

Claim 3. Component C, contains at least 5 points.
Suppose not. Then IV(Ci)I = 3. But then C, must be a path of

length 2, since we know graph G contains no triangles. Let the two
adjacent lines of C, be denoted by e,5 and e6. As before, using the Euler
formula to do a face count, we have 3f3 + 2f4 + fs ! 12 and, since

f3= f4= 0, we have f5 ! 12. But G - el- e2- e5 - er, is bipartite and
hence G has fA < 8, a contradiction and Claim 3 is proved.

Claim 4. Component C, contains a cycle.
If not, it must be a tree with at least 2 endpoints and hence sends

at least 4 lines to S. If it had at least 3 endpoints, it would have to send
at least 6 lines to S, a contradiction. Thus tree C, contains exactly 2
endpoints and hence must be a path. But since C, sends exactly 5 lines
to 5, it must be a path of length 2, contradicting Claim 3.
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Let G' denote the graph obtained from G by contracting component
C1 to a single point ul. Of course G' is planar since G is and G' has
a single point ul of degree 5 and all others of degree 3. It is possible
that by contracting C1 to a point we have introduced parallel lines in
G'. However, if p' = IV(G')I, q' = IE(G')I and r' denotes the number of
faces in any imbedding of graph G' in the plane, using Euler's formula, we
have Z'(6-i)f = 6r/-2q' = 6r'-3p'-2 = 6(2+q'-p')-3p'-2 = 16,
since in G' we have 2q' = 3p' + 2. So, in particular, in G' we have
4f' + 3f' + 2f' + f' 16.

Now since induced subgraph G[S] contains only 2 lines, there can be
at most 4 odd faces in G'. Hence f' + f _ 4. Thus 2f' + f' + f' > 6.

But G has no faces of size 3 or 4, so all triangular or quadrilateral faces
in G' must contain ul in their boundary. Thus in G' we also have But
since deg ul = 5 in G', we also have f + f < 5. Hence f > 1. This
implies that in G we have IV(L) n Sl _ 4 where L denotes the set of
lines joining component C1 to G[V(G) - V(C1 )]. There are thus only 2
possible values for IV(L) n SI and we now proceed to treat each.

Case 3.1. Suppose JV(L) n SI = 3.
Let v1 , v2 and v3 be the 3 points of S adjacent to points of C1. Note

that if any of these vi's is adjacent to 3 points of C1 , then the other two
together form a cutset of G of size 2, contradicting the hypothesis that G
is 3-connected. So we must have 2 of the vi's incident with 2 lines to C1

and the third vi incident with 1 line to C 1 . Without loss of generality,
assume that V1 , v2 are each adjacent to 2 points of C1 and v 3 is adjacent
to 1 point of C1 .

Note that since G is 3-connected, {V 1 , v2 , v 3} is an independent set.
Now let f, be the line joining vi to a point not in C1 for i = 1, 2,
and let f3 be the line joining v3 to C 1 . Then If,, f2, f3} is a cutset in
G separating G 2 = G[V(C1 ) U {V1 , v2 }] from G 3 = G[V(G) - V(C1 ) -
{V 1 , v2 }]. (See Figure 3.3.) Moreover, G 2 contains a cycle since it contains
component C 1 .

We claim that G3 also contains a cycle. Suppose not. Then G 3 is a
forest containing the 2 lines el and e 2 and hence is a forest containing at
least 2 endpoints. Thus G 3 sends at least 4 lines to G 2 , a contradiction.

Thus {fl, f2, f3} is a cyclic cutset of size 3 in G, contradicting the
hypothesis that G is cyclically 4-connected.

Case 3.2. Suppose IV(L) n S1 = 4.
Let v, be the point of S adjacent to 2 points of C, and v2 , v3 , v4

be the rest of V(L) n S. Let w be the point adjacent to v, which lies
outside of V(C 1 ).

[ ~
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FIGURE 3.3.

First suppose v, is adjacent to one of v2 , v3 or v4 ; say, without loss
of generality, to v2 via line el. Let the lines joining vi to C1 be fi for

i = 2, 3, 4. Finally, let g be the line incident with v2 , where g 3 el or

f2. Then {g, f3, f4} is a cutset in G separating J1 = G[V(C 1)U {v 1 , v2}]
from the rest of G. Let us denote G[V(G) - V(J 1 )] by J 2 . Note first
that J1 contains a cycle since C1 does.

Claim 5. Subgraph J2 contains a cycle.
Suppose not. We know that J 2 contains line e2 and hence is a

forest with at least 2 endpoints. So J2 sends at least 4 lines to J 1 , a
contradiction.

Thus {g, fh, f4} is a cyclic cutset in G, contradicting the hypothesis
that G is cyclically 4-connected.

So we may assume that v, is adjacent to none of the points v2 , v3 , v4;
that is, w 0 {v 2 , v3 , v4 }.

Now contract the subgraph G[V(C1 ) U {vl }] to a single point cl and

-mm...
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FIGURE 3.4.

call the resulting graph G"'. (See Figure 3.4.)
The graph G"' has all points of degree 3, with the single exception

of point cl which has degree 4. Let p"', q.. and r"' denote the number
of points, lines and faces of graph G.ll respectively. Then doing an Euler
face count in G', we have " (6-i)f7'- = 6r"-2q" -- 6r" - (3p'" + 1) -
14. So in particular, we have 4f ' + 3f 1 + 2f ' + f>' 14.

But w o {V 2 , v 3 , v 4 }, so f.. = 0, and so in G" we have:

3f' +2f4' + fr'> 14 (A)

We also know that since deg cl - 4 in G "',

f+ f' <4. (B)

Now either w E S or w is a singleton component of G - S different
from C 1 .

Suppose that w E S. Then any triangle or quadrilateral in G" must
use one of the lines el or e2 , so

f3' +f < 4. (C)

But then if we compute (A) - ((B) + (C)) we obtain f"' + f"' > 6
which contradicts inequality (B).

So we may suppose that w is a singleton component of G - S.

Let line c1 w be denoted by h in G "'. Let the 4 faces at point cl be
denoted F 1, F2 , F 3 and F 4 as shown in Figure 3.5.
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FIGURE 3.5.

FIGURE 3.6.

Note that since lines el and e2 are independent, at most one of F2

and F 3 is a triangle.
3.2.1. First suppose that F4 is a triangle.
3.2.1.1. Suppose that face F1 is also a triangle. (See Figure 3.6.)

Then if F3 is a triangle, the points {v 2 , v3} are a cutset in G, a contradic-
tion. Thus F3 is not a triangle and by symmetry, neither is F2 . But then
let h 2 = V2 X, x0 {cl, w }, h3 = V3cj and h 4 = v4 y, y O {c,w}. Then
{h 2, h3, h4} is a set of 3 independent lines separating cycle v2 cIwv2 , for

-" I'-"' -1 .r " ' " ' " ''h NW"AV '
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FIGURE 3.7.

example, from a subgraph H." of G"' containing 3 points of degree ;2 in
H"', namely x, V3 , and y. Moreover, since G is 3-connected, subgraph
H".' must be connected and hence {h 2, h3 , h4} is a cyclic 3-cut, a con-
tradiction.

3.2.1.2. So suppose face F1 is not a triangle. Since el and e-, are
independent, at most one of F2 and F3 is a triangle. Hence fJ -<

If f 1, then f < 3 and f < 4. But then 2f ' f/' - f <

and combining this inequality with inequality (A). we obtain f "' ±f.' f >
which contradicts inequality (B).

So we may conclude that f.. = 2 and hence exactly one of F, and
F3 is a triangle.

3.2.1.2.1. Suppose F2 is a triangle. In particular, suppose line el
joins points v2 and V3. Then e2 is not incident with t'2,. So I,,' must be
adjacent to a point x in G - S, where x $ w But x cannot be adjacent
to w, so face F, cannot be a quadrilateral. So f." < L It then folo,., " J4 -

that f/I/ + f/it + f... < 6 and hence f~ f... > 6. contradicting inequality
(B).

3.2.1.2.2. Now suppose F 3 is a triangle (And face V. Is ,,,t .1

triangle.) So we may assume that line el joins points 13 and I4

We know that F, is not a triangle.
If face F, is not a quadrilateral, we get the same contradict on 'hat

we obtained in Subcase 3.2.1.2.1, so suppose F, is a quadrilatera i p,,

Figure 3.7.)
Thus line e2 must join point t,, to a point y in .'; and. in ailit ,ti .
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FIGURE 3.8.

9 is adjacent to w.
So f"' = 2, f"' < 2 and f"? < 2. But then 2f'-f~f'f.. < Wand~

combining this inequality wit h inequality (A), we ibtain f J7> 6
which contradicts inequality (B).

3.2.2. Suppose now that F4 is not a triangle. (And by sy mmet ry.
we may also suppose that F, is not a triangle either.) Thus f7 .. I .Now
if f7 1. then f"' < 3 and fji < 3, while if f7 0, then f7 < 1
and f7 < 4. But in either case, 2f "' -i f f.. < S and once again
combining this inequality with inequality (A). it follows that f> f.. > 6
and again we have a contradiction of inequality (B).

This completes the proof of the theorem.

The following corollary is now immediate.

3.2. COROLLARY. If G is a cubic, 3-connected, planar gjraph and,
in addition, is cyclically 5-connected, then G is~ 2-exrtendable. 0

We conclude with several remarks as to the sharpness of Theorem
31First we note that there are graphs which satisfy the hypotheses of

Theorem 3.1, but not those of Corollary 3.2. Suich a graph is displayed
.in Figure 3.8.

WVe now observe that ouir theorem is best possible in the sense that
we cannot weaken the assumption that the cYclic conniect ivitv 1.' .1 to the
assumption that it is only 34 in Theorem .3. 1. The graph in Fiviire 3 A
Iis cubic, 3-connected and planar without any t riaungles or quad ri laterals.
huit it is not 2-extendable. (Lines P, Mnd e'..,(d') riot (Atenld to) t p~n m
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FIGURE 3.9.

FIGURE~ 3.10.

Finally, in Figure 3. 10 we exhibit a graph which is cubic, 3-connected.
planar and cyclically 4-connected, but not 2-extendable. (Lines el and C.,
do not extend.) Of course, by Theorem .3.1. such a graph must conta ir
a quadrilateral and the example we display contains two sucoh.
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